If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6y^2+12y+8=0
a = -6; b = 12; c = +8;
Δ = b2-4ac
Δ = 122-4·(-6)·8
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{21}}{2*-6}=\frac{-12-4\sqrt{21}}{-12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{21}}{2*-6}=\frac{-12+4\sqrt{21}}{-12} $
| (3x+8)+52=90 | | 4h–7=25 | | -6x+20=-18 | | 5-|1-4x|=-1 | | 200-1x=180 | | -5/4=3/4z+1/2 | | 36x-12x=35 | | 4x−9=3x+5 | | 4x−9=3x+54x−9=3x+5 | | x+4=x−12x+4=x−12 | | 200-2.0x=180 | | 2y-3=22-3y | | (200)=5·2□n | | 4+5c-20=-6 | | 1088-5x=1360-9x | | |4x|=19.6 | | -0,99+t=-0,9 | | y-59,7=-100 | | x/8-3/8=1/8 | | 3x^2+5=10x-9 | | -6(x+1)-x-12=-7(x+4)+10 | | 10x2+24x+15=1 | | 9.8x+30.34=-10.2x+29.44 | | 8/t+t2;=4 | | 3x+1 −32−4x =145x−4 +67x | | -6(x+1)-x-12=-7(x+4+10 | | x+(x*5/100)=640000 | | x+x*5/100)=640000 | | -3x+5x-8=2(x-3)-5 | | 1/2+3.2y=20 | | 3(6z-1)-2(z+5)=4(z+1) | | y-6.99=-7 |